Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Intell Based Med ; 6: 100057, 2022.
Article in English | MEDLINE | ID: covidwho-1996199

ABSTRACT

Digitally-delivered healthcare is well suited to address current inequities in the delivery of care due to barriers of access to healthcare facilities. As the COVID-19 pandemic phases out, we have a unique opportunity to capitalize on the current familiarity with telemedicine approaches and continue to advocate for mainstream adoption of remote care delivery. In this paper, we specifically focus on the ability of GuessWhat? a smartphone-based charades-style gamified therapeutic intervention for autism spectrum disorder (ASD) to generate a signal that distinguishes children with ASD from neurotypical (NT) children. We demonstrate the feasibility of using "in-the-wild", naturalistic gameplay data to distinguish between ASD and NT by children by training a random forest classifier to discern the two classes (AU-ROC = 0.745, recall = 0.769). This performance demonstrates the potential for GuessWhat? to facilitate screening for ASD in historically difficult-to-reach communities. To further examine this potential, future work should expand the size of the training sample and interrogate differences in predictive ability by demographic.

2.
NPJ Digit Med ; 5(1): 57, 2022 May 05.
Article in English | MEDLINE | ID: covidwho-1825105

ABSTRACT

Autism spectrum disorder (ASD) can be reliably diagnosed at 18 months, yet significant diagnostic delays persist in the United States. This double-blinded, multi-site, prospective, active comparator cohort study tested the accuracy of an artificial intelligence-based Software as a Medical Device designed to aid primary care healthcare providers (HCPs) in diagnosing ASD. The Device combines behavioral features from three distinct inputs (a caregiver questionnaire, analysis of two short home videos, and an HCP questionnaire) in a gradient boosted decision tree machine learning algorithm to produce either an ASD positive, ASD negative, or indeterminate output. This study compared Device outputs to diagnostic agreement by two or more independent specialists in a cohort of 18-72-month-olds with developmental delay concerns (425 study completers, 36% female, 29% ASD prevalence). Device output PPV for all study completers was 80.8% (95% confidence intervals (CI), 70.3%-88.8%) and NPV was 98.3% (90.6%-100%). For the 31.8% of participants who received a determinate output (ASD positive or negative) Device sensitivity was 98.4% (91.6%-100%) and specificity was 78.9% (67.6%-87.7%). The Device's indeterminate output acts as a risk control measure when inputs are insufficiently granular to make a determinate recommendation with confidence. If this risk control measure were removed, the sensitivity for all study completers would fall to 51.6% (63/122) (95% CI 42.4%, 60.8%), and specificity would fall to 18.5% (56/303) (95% CI 14.3%, 23.3%). Among participants for whom the Device abstained from providing a result, specialists identified that 91% had one or more complex neurodevelopmental disorders. No significant differences in Device performance were found across participants' sex, race/ethnicity, income, or education level. For nearly a third of this primary care sample, the Device enabled timely diagnostic evaluation with a high degree of accuracy. The Device shows promise to significantly increase the number of children able to be diagnosed with ASD in a primary care setting, potentially facilitating earlier intervention and more efficient use of specialist resources.

3.
BioData Min ; 14(1): 20, 2021 Mar 20.
Article in English | MEDLINE | ID: covidwho-1143238

ABSTRACT

The evolutionary dynamics of SARS-CoV-2 have been carefully monitored since the COVID-19 pandemic began in December 2019. However, analysis has focused primarily on single nucleotide polymorphisms and largely ignored the role of insertions and deletions (indels) as well as recombination in SARS-CoV-2 evolution. Using sequences from the GISAID database, we catalogue over 100 insertions and deletions in the SARS-CoV-2 consensus sequences. We hypothesize that these indels are artifacts of recombination events between SARS-CoV-2 replicates whereby RNA-dependent RNA polymerase (RdRp) re-associates with a homologous template at a different loci ("imperfect homologous recombination"). We provide several independent pieces of evidence that suggest this. (1) The indels from the GISAID consensus sequences are clustered at specific regions of the genome. (2) These regions are also enriched for 5' and 3' breakpoints in the transcription regulatory site (TRS) independent transcriptome, presumably sites of RNA-dependent RNA polymerase (RdRp) template-switching. (3) Within raw reads, these indel hotspots have cases of both high intra-host heterogeneity and intra-host homogeneity, suggesting that these indels are both consequences of de novo recombination events within a host and artifacts of previous recombination. We briefly analyze the indels in the context of RNA secondary structure, noting that indels preferentially occur in "arms" and loop structures of the predicted folded RNA, suggesting that secondary structure may be a mechanism for TRS-independent template-switching in SARS-CoV-2 or other coronaviruses. These insights into the relationship between structural variation and recombination in SARS-CoV-2 can improve our reconstructions of the SARS-CoV-2 evolutionary history as well as our understanding of the process of RdRp template-switching in RNA viruses.

SELECTION OF CITATIONS
SEARCH DETAIL